Section 13.3 Partial Derivatives

If f is a function of two variables, its partial derivatives are the functions f_{x} and f_{y} defined by

$$
\begin{aligned}
& f_{x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\
& f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
\end{aligned}
$$

Theorem $f_{x}(a, b)=g^{\prime}(a)$ where $g(x)=f(x, b)$.

Notations for Partial Derivatives: If $z=f(x, y)$, we write

$$
\begin{aligned}
& f_{x}(x, y)=f_{x}=\frac{\partial f}{\partial x}=\frac{\partial}{\partial x}[f(x, y)]=\frac{\partial z}{\partial x}=D_{x} f \\
& f_{y}(x, y)=f_{y}=\frac{\partial f}{\partial y}=\frac{\partial}{\partial y}[f(x, y)]=\frac{\partial z}{\partial y}=D_{y} f
\end{aligned}
$$

Rule for Finding Partial Derivatives of $z=f(x, y)$

1. To find f_{x}, regard y as a constant and differentiate $f(x, y)$ with respect to x.
2. To find f_{y}, regard x as a constant and differentiate $f(x, y)$ with respect to y.

Note: Partial derivatives can also be interpreted as rates of change. If $z=f(x, y)$, then $\frac{\partial z}{\partial x}$ represents the rate of change of z with respect to x when y is fixed. Similarly, $\frac{\partial z}{\partial y}$ represents the rate of change of z with respect to y when x is fixed.

Higher Derivatives

If f is a function of two variables, then its partial derivatives f_{x} and f_{y} are also functions of two variables, so we can consider the second partial derivatives of $f: f_{x x}, f_{x y}, f_{y x}, f_{y y}$.

Clairaut's Theorem Suppose f is defined on a disk D that contains the point (a, b). If the functions $f_{x y}$ and $f_{y x}$ are both continuous on D, then $f_{x y}(a, b)=f_{y x}(a, b)$.

