Section 13.2 Limits and Continuity

We write

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

and we say that the limit of $f(x, y)$ as (x, y) approaches (a, b) is L if we can make the values of $f(x, y)$ as close to L as we like by taking the point (x, y) sufficiently close to the point (a, b) but not equal to (a, b).

Theorem If $f(x, y) \rightarrow L_{1}$ as $(x, y) \rightarrow(a, b)$ along a path C, and $f(x, y) \rightarrow L_{2}$ as $(x, y) \rightarrow(a, b)$ along a path C_{2}, where $L_{1} \neq L_{2}$, then $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ does not exist.

Note: The Limit Laws from Calculus I hold (ie, the limit of the sum is the sum of the limits, the limit of a constant is that constant, the Squeeze Theorem).

Continuity A function f of two variables is called continuous at (a, b) if

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)
$$

We say f is continuous on D if f is continuous at every point (a, b) in D.

