Section 12.5 Curvature

The $\underline{curvature}$ of a curve is

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right|$$

where ${\bf T}$ is the unit tangent vector.

By Chain Rule,
$$\frac{d\mathbf{T}}{dt} = \frac{d\mathbf{T}}{ds}\frac{ds}{dt}$$
 so
 $\kappa = \left|\frac{d\mathbf{T}}{ds}\right| = \left|\frac{d\mathbf{T}/dt}{ds/dt}\right| = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|}.$

Theorem $\kappa(t) = \frac{|\mathbf{T}'(t)|}{|\mathbf{r}'(t)|}.$

Theorem For the special case of a plane curve with equation y = f(x), we have

$$\kappa(x) = \frac{|f''(x)|}{(1 + (f'(x))^2)^{3/2}}$$