Section 12.5 Curvature

The curvature of a curve is

$$
\kappa=\left|\frac{d \mathbf{T}}{d s}\right|
$$

where \mathbf{T} is the unit tangent vector.
By Chain Rule, $\frac{d \mathbf{T}}{d t}=\frac{d \mathbf{T}}{d s} \frac{d s}{d t}$ so

$$
\kappa=\left|\frac{d \mathbf{T}}{d s}\right|=\left|\frac{d \mathbf{T} / d t}{d s / d t}\right|=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

Theorem $\kappa(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}$.

Theorem For the special case of a plane curve with equation $y=f(x)$, we have

$$
\kappa(x)=\frac{\left|f^{\prime \prime}(x)\right|}{\left(1+\left(f^{\prime}(x)\right)^{2}\right)^{3 / 2}}
$$

