Section 12.3 Change of Parameter; Arc Length

For the curve

$$
\mathbf{r}(t)=<f(t), g(t), h(t)>, \quad a \leq t \leq b
$$

we have the parametric equations

$$
x=f(t), \quad y=g(t), \quad z=h(t)
$$

If the curve is traversed exactly once as t increases from a to b, then the length of the curve is

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{\frac{d x^{2}}{d t}+\frac{d y^{2}}{d t}+\frac{d z^{2}}{d t}} d t \\
& =\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
\end{aligned}
$$

If $\mathbf{r}(t)=<f(t), g(t), h(t)>, a \leq t \leq b$, we define its arc length function s by

$$
s(t)=\int_{a}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u=\int_{a}^{t} \sqrt{\frac{d x^{2}}{d u}+\frac{d y^{2}}{d u}+\frac{d z^{2}}{d u}} d u .
$$

$s(t)$ represents the length of the curve traced out by $\mathbf{r}(t)$ from $\mathbf{r}(a)$ to $\mathbf{r}(t)$.
By Fundamental Theorem of Calculus, differentiating

$$
s(t)=\int_{a}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u
$$

we find

$$
\frac{d s}{d t}=\left|\mathbf{r}^{\prime}(t)\right|
$$

It is often useful to parametrize a curve with respect to arc length because arc length does not depend on a particular coordinate system. If a curve $\mathbf{r}(t)$ is given in terms of a parameter t and $s(t)$ is the arc length function, then we may be able to solve for t as a function of $s: t=t(s)$. Then the curve can be reparametrized in terms of s by substituting for $t: \mathbf{r}=\mathbf{r}(t(s))$.

