Section 11.6 Planes in 3-Space

A plane in space is determined by a point $P\left(x_{0}, y_{0}, z_{0}\right)$ in the plane and a vector \mathbf{n} that is orthogonal to the plane. This orthogonal vector \mathbf{n} is called a normal vector. If we write $\mathbf{n}=<a, b, c>$, the scalar equation of the plane through $P\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $\mathbf{n}=<a, b, c>$ is

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0 .
$$

Two planes are parallel if their normal vectors are parallel. Similarly, two planes are perpendicular if their normal vectors are perpendicular.

The distance D from a point $P\left(x_{1}, y_{1}, z_{1}\right)$ to the plane $a x+b y+c z+d=0$ is given by

$$
D=\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

