Section 11.5 Parametric Equations of Lines

A line L in three-dimensional space is determined by a point $P\left(x_{0}, y_{0}, z_{0}\right)$ on L and the direction of L. Thus

$$
\mathbf{r}=\mathbf{r}_{\mathbf{0}}+t \mathbf{v}
$$

is a vector equation of L, where $\mathbf{r}_{\mathbf{0}}$ is the position vector of $P\left(\mathrm{ie}, \mathbf{r}_{\mathbf{0}}=<x_{0}, y_{0}, z_{0}>\right)$ and \mathbf{v} is any vector parallel to L.
If $\mathbf{v}=\langle a, b, c>$, we can write

$$
\mathbf{r}=\mathbf{r}_{\mathbf{0}}+t \mathbf{v}
$$

as

$$
x=x_{0}+a t, \quad y=y_{0}+b t, \quad z=z_{0}+c t
$$

for $t \in \mathbb{R}$. These equations are called parametric equations of the line L through the point $P\left(x_{0}, y_{0}, z_{0}\right)$ and parallel to the vector $\mathbf{v}=\langle a, b, c\rangle$. Each value of the parameter t gives a point (x, y, z) on L.
Another way of describing a line L is to eliminate the parameter t. If none of a, b, or c is 0 , we can solve each parametric equation for t, equate the results, and obtain

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

These equations are called symmetric equations of L.
If one of a, b, or c is 0 , we can still eliminate t. For example, if $a=0$, we could write the equations of L as

$$
x=x_{0}, \quad \frac{y-y_{0}}{b}=\frac{z-z_{0}}{c} .
$$

