Section 11.4 Cross Products

If \mathbf{a} and \mathbf{b} are nonzero three-dimensional vectors, the cross product of \mathbf{a} and \mathbf{b} is the vector

$$
\mathbf{a} \times \mathbf{b}=(|\mathbf{a}||\mathbf{b}| \sin (\theta)) \mathbf{n}
$$

where θ is the angle between \mathbf{a} and $\mathbf{b}, 0 \leq \theta \leq \pi$, and \mathbf{n} is a unit vector perpendicular to both \mathbf{a} and \mathbf{b} and whose direction is given by the right-hand rule: If the fingers of your right hand curl through the angle θ from \mathbf{a} to \mathbf{b}, then your thumb points in the direction of \mathbf{n}.

Notes

1. If either \mathbf{a} or \mathbf{b} is $\mathbf{0}$, then we define $\mathbf{a} \times \mathbf{b}$ to be $\mathbf{0}$.
2. Because $\mathbf{a} \times \mathbf{b}$ is a scalar multiple of \mathbf{n}, it has the same direction as \mathbf{n} and so $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b}.
3. Two nonzero vectors \mathbf{a} and \mathbf{b} are parallel if and only if $\mathbf{a} \times \mathbf{b}=\mathbf{0}$.

Properties of the Cross Product If \mathbf{a}, \mathbf{b}, and \mathbf{d} are vectors and c is a scalar, then

1. $\mathbf{a} \times \mathbf{b}=-(\mathbf{b} \times \mathbf{a})$
2. $(c \mathbf{a}) \times \mathbf{b}=c(\mathbf{a} \times \mathbf{b})=\mathbf{a} \times(c \mathbf{b})$
3. $\mathbf{a} \times(\mathbf{b}+\mathbf{d})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{d}$
4. $(\mathbf{a}+\mathbf{b}) \times \mathbf{d}=\mathbf{a} \times \mathbf{d}+\mathbf{b} \times \mathbf{d}$

Theorem The length of the cross product $\mathbf{a} \times \mathbf{b}$ is equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b}.

The Cross Product in Component Form If $\mathbf{a}=<a_{1}, a_{2}, a_{3}>$ and $\mathbf{b}=<b_{1}, b_{2}, b_{3}>$, then

$$
\mathbf{a} \times \mathbf{b}=<a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}>
$$

Equivalently,

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& =\mathbf{i}\left|\begin{array}{cc}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \\
& =\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k} .
\end{aligned}
$$

Triple Products The volume of the parallelepiped determined by the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} is the magnitude of their scalar triple product:

$$
V=|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})| .
$$

