Section 11.3 Dot Products

The dot product of two nonzero vectors \mathbf{a} and \mathbf{b} is the number

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)$$

where θ is the angle between **a** and **b**, $0 \le \theta \le \pi$. (ie, θ is the smaller angle between the vectors when they are drawn with the same initial point.) If either **a** or **b** is **0**, we define $\mathbf{a} \cdot \mathbf{b} = 0$.

Two nonzero vectors **a** and **b** are called <u>perpendicular</u> or <u>orthogonal</u> if the angle between them is $\theta = \frac{\pi}{2}$. The zero vector **0** is considered to be perpendicular to all vectors.

Theorem Two vectors \mathbf{a} and \mathbf{b} are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b} = 0$.

The Dot Product in Component Form The dot product of $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$ is

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3.$$

Properties of the Dot Product If \mathbf{a}, \mathbf{b} and \mathbf{c} are vectors in V_3 and c is a scalar, then

1. $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$. 2. $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$. 3. $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$. 4. $(c\mathbf{a}) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (c\mathbf{b})$. 5. $\mathbf{0} \cdot \mathbf{a} = 0$.

Projections

Vector Projection of \mathbf{b} onto \mathbf{a} :

$$\operatorname{proj}_{\mathbf{a}}\mathbf{b} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2} \mathbf{a}$$

Scalar Projection of **b** onto **a**:

$$\mathrm{comp}_{\mathbf{a}}\mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$$