Section 11.3 Dot Products

The dot product of two nonzero vectors \mathbf{a} and \mathbf{b} is the number

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos (\theta)
$$

where θ is the angle between \mathbf{a} and $\mathbf{b}, 0 \leq \theta \leq \pi$. (ie, θ is the smaller angle between the vectors when they are drawn with the same initial point.) If either \mathbf{a} or \mathbf{b} is $\mathbf{0}$, we define $\mathbf{a} \cdot \mathbf{b}=0$.

Two nonzero vectors \mathbf{a} and \mathbf{b} are called perpendicular or orthogonal if the angle between them is $\theta=\frac{\pi}{2}$. The zero vector $\mathbf{0}$ is considered to be perpendicular to all vectors.

Theorem Two vectors \mathbf{a} and \mathbf{b} are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b}=0$.

The Dot Product in Component Form The dot product of $\mathbf{a}=<a_{1}, a_{2}, a_{3}>$ and $\mathbf{b}=<b_{1}, b_{2}, b_{3}>$ is

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Properties of the Dot Product If \mathbf{a}, \mathbf{b} and \mathbf{c} are vectors in V_{3} and c is a scalar, then

1. $\mathbf{a} \cdot \mathbf{a}=|\mathbf{a}|^{2}$.
2. $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$.
3. $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$.
4. $(c \mathbf{a}) \cdot \mathbf{b}=c(\mathbf{a} \cdot \mathbf{b})=\mathbf{a} \cdot(c \mathbf{b})$.
5. $\mathbf{0} \cdot \mathbf{a}=0$.

Projections

Vector Projection of \mathbf{b} onto \mathbf{a} :

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}} \mathbf{a}
$$

Scalar Projection of \mathbf{b} onto \mathbf{a} :

$$
\operatorname{comp}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}
$$

