Section 11.2 Vectors

The term vector is used to indicate a quantity that has both magnitude and direction. (For example, velocity has magnitude and direction; speed only has magnitude.)

The zero vector, denoted by $\mathbf{0}$, has length 0 and is the only vector with no specific direction.

Vector Addition If \mathbf{u} and \mathbf{v} are vectors positioned so the initial point of \mathbf{v} is at the terminal point of \mathbf{u}, then the sum $\mathbf{u}+\mathbf{v}$ is the vector from the initial point of \mathbf{u} to the terminal point of \mathbf{v}.

Scalar Multiplication If c is a scalar and \mathbf{v} is a vector, then the scalar multiple $c \mathbf{v}$ is the vector whose length is $|c|$ times the length of \mathbf{v} and whose direction is the same as \mathbf{v} if $c>0$ and is opposite to \mathbf{v} if $c<0$. If $c=0$ or $\mathbf{v}=\mathbf{0}$, then $c \mathbf{v}=\mathbf{0}$.

Notes: Two nonzero vectors are parallel if they are scalar multiples of one another.
The vector $-\mathbf{v}=(-1) \mathbf{v}$ has the same length as \mathbf{v} but points in the opposite direction. $-\mathbf{v}$ is called the negative of \mathbf{v}. Thus, the difference $\mathbf{u}-\mathbf{v}$ means $\mathbf{u}-\mathbf{v}=\mathbf{u}+(-\mathbf{v})$.

Components By introducing a coordinate system and setting the initial point of a vector at the origin, we can work with vectors algebraically. The coordinates of the terminal point are called the components of the vector and are denoted by $\mathbf{a}=<a_{1}, a_{2}, a_{3}>$.

The magnitude or length of the vector $\mathbf{v}=<v_{1}, v_{2}, v_{3}>$ is denoted by $|\mathbf{v}|$ or $\|\mathbf{v}\|$ and is calculated:

$$
|\mathbf{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}
$$

Theorem If $\mathbf{a}=<a_{1}, a_{2}, a_{3}>$ and $\mathbf{b}=<b_{1}, b_{2}, b_{3}>$, then

$$
\begin{aligned}
\mathbf{a}+\mathbf{b} & =<a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}> \\
\mathbf{a}-\mathbf{b} & =<a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}> \\
c \mathbf{a} & =<c a_{1}, c a_{2}, c a_{3}>
\end{aligned}
$$

We denote by V_{3} the set of all three-dimensional vectors and, more generally, V_{n} is the set of all n-dimensional vectors:

$$
\mathbf{a}=<a_{1}, a_{2}, \cdots, a_{n}>
$$

Properties of Vectors If \mathbf{a}, \mathbf{b} and \mathbf{c} are vectors in V_{n} and c and d are scalars, then

1. $\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}$
2. $\mathbf{a}+(\mathbf{b}+\mathbf{c})=(\mathbf{a}+\mathbf{b})+\mathbf{c}$
3. $\mathbf{a}+\mathbf{0}=\mathbf{a}$
4. $\mathbf{a}+(-\mathbf{a})=\mathbf{0}$
5. $c(\mathbf{a}+\mathbf{b})=c \mathbf{a}+c \mathbf{b}$
6. $(c+d) \mathbf{a}=c \mathbf{a}+d \mathbf{a}$
7. $(c d) \mathbf{a}=c(d \mathbf{a})$
8. $1 \mathbf{a}=\mathbf{a}$

By defining $\mathbf{i}=<1,0,0>, \mathbf{j}=<0,1,0>$, and $\mathbf{k}=<0,0,1>$, we see that any vector in V_{3} can be written as a combination of \mathbf{i}, \mathbf{j}, and \mathbf{k} :

$$
\begin{aligned}
\mathbf{v}=<v_{1}, v_{2}, v_{3}> & =v_{1}<1,0,0>+v_{2}<0,1,0>+v_{3}<0,0,1> \\
& =v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}
\end{aligned}
$$

We call \mathbf{i}, \mathbf{j}, and \mathbf{k} the standard basis for V_{3}.

A unit vector is a vector whose length is $1 . \mathbf{i}, \mathbf{j}$, and \mathbf{k} are unit vectors and, in general, if $\mathbf{a} \neq \mathbf{0}$, then the unit vector that has the same direction as \mathbf{a} is

$$
\mathbf{u}=\frac{1}{|\mathbf{a}|} \mathbf{a}=\frac{\mathbf{a}}{|\mathbf{a}|}
$$

