Section 11.2 Vectors

The term <u>vector</u> is used to indicate a quantity that has both magnitude and direction. (For example, velocity has magnitude and direction; speed only has magnitude.)

The zero vector, denoted by $\mathbf{0}$, has length 0 and is the only vector with no specific direction.

Vector Addition If \mathbf{u} and \mathbf{v} are vectors positioned so the initial point of \mathbf{v} is at the terminal point of \mathbf{u} , then the sum $\mathbf{u} + \mathbf{v}$ is the vector from the initial point of \mathbf{u} to the terminal point of \mathbf{v} .

Scalar Multiplication If c is a scalar and v is a vector, then the scalar multiple $c\mathbf{v}$ is the vector whose length is |c| times the length of v and whose direction is the same as v if c > 0 and is opposite to v if c < 0. If c = 0 or $\mathbf{v} = \mathbf{0}$, then $c\mathbf{v} = \mathbf{0}$.

Notes: Two nonzero vectors are parallel if they are scalar multiples of one another.

The vector $-\mathbf{v} = (-1)\mathbf{v}$ has the same length as \mathbf{v} but points in the opposite direction. $-\mathbf{v}$ is called the negative of \mathbf{v} . Thus, the difference $\mathbf{u} - \mathbf{v}$ means $\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v})$.

Components By introducing a coordinate system and setting the initial point of a vector at the origin, we can work with vectors algebraically. The coordinates of the terminal point are called the <u>components</u> of the vector and are denoted by $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$.

The magnitude or length of the vector $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ is denoted by $|\mathbf{v}|$ or $||\mathbf{v}||$ and is calculated:

$$|\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}.$$

Theorem If $a = \langle a_1, a_2, a_3 \rangle$ and $b = \langle b_1, b_2, b_3 \rangle$, then

$$\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$$

$$\mathbf{a} - \mathbf{b} = \langle a_1 - b_1, a_2 - b_2, a_3 - b_3 \rangle$$

$$c\mathbf{a} = \langle ca_1, ca_2, ca_3 \rangle.$$

We denote by V_3 the set of all three-dimensional vectors and, more generally, V_n is the set of all *n*-dimensional vectors:

$$\mathbf{a} = \langle a_1, a_2, \cdots, a_n \rangle$$
.

Properties of Vectors If \mathbf{a}, \mathbf{b} and \mathbf{c} are vectors in V_n and c and d are scalars, then

1. $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$ 2. $\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$ 3. $\mathbf{a} + \mathbf{0} = \mathbf{a}$ 4. $\mathbf{a} + (-\mathbf{a}) = \mathbf{0}$ 5. $c(\mathbf{a} + \mathbf{b}) = c\mathbf{a} + c\mathbf{b}$ 6. $(c + d)\mathbf{a} = c\mathbf{a} + d\mathbf{a}$ 7. $(cd)\mathbf{a} = c(d\mathbf{a})$ 8. $1\mathbf{a} = \mathbf{a}$ By defining $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$, and $\mathbf{k} = \langle 0, 0, 1 \rangle$, we see that any vector in V_3 can be written as a combination of \mathbf{i}, \mathbf{j} , and \mathbf{k} :

$$\begin{split} \mathbf{v} = & < v_1, v_2, v_3 > = v_1 < 1, 0, 0 > + v_2 < 0, 1, 0 > + v_3 < 0, 0, 1 > \\ & = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}. \end{split}$$

We call \mathbf{i}, \mathbf{j} , and \mathbf{k} the standard basis for V_3 .

A <u>unit vector</u> is a vector whose length is 1. \mathbf{i}, \mathbf{j} , and \mathbf{k} are unit vectors and, in general, if $\mathbf{a} \neq \mathbf{0}$, then the unit vector that has the same direction as \mathbf{a} is

$$\mathbf{u} = \frac{1}{|\mathbf{a}|}\mathbf{a} = \frac{\mathbf{a}}{|\mathbf{a}|}.$$