Section 11.1 Rectangular Coordinates in 3-Space

The direction of the $z$-axis is determined by the right-hand rule: If you curl the fingers of your right hand around the $z$-axis in the direction of a $90^{\circ}$ counterclockwise rotation from the positive $x$-axis to the positive $y$-axis, then your thumb points in the positive direction of the $z$-axis.

The three coordinate planes divide space into eight parts, called octants. The first octant is determined by the positive axes (ie, $x \geq 0, y \geq 0, z \geq 0$ ).
If we drop a perpendicular from $P(a, b, c)$ to the $x y$-plane, we get a point $Q$ with coordinates $(a, b, 0)$ called the projection of $P$ on the $x y$-plane. Similarly, $R(0, b, c)$ is the projection of $P$ on the $y z$-plane and $S(a, 0, c)$ is the projection of $P$ on the $x z$-plane.
$\mathbb{R}^{3}=\{(x, y, z) \mid x, y, z \in \mathbb{R}\}$ is called a three-dimensional rectangular coordinate system.

Distance Formula in Three Dimensions The distance $\left|P_{1} P_{2}\right|$ between the points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

Equation of a Sphere An equation of a sphere with center $C(h, k, l)$ and radius $r$ is

$$
(x-h)^{2}+(y-k)^{2}+(z-l)^{2}=r^{2} .
$$

