Sections 3.5 Homework

1.

a) Let $\left(s_{n}\right)$ be a sequence such that

$$
\left|s_{n+1}-s_{n}\right|<2^{-n} \text { for all } n \in \mathbb{N}
$$

Prove that $\left(s_{n}\right)$ is a Cauchy sequence and hence a convergent sequence.
b) Is the result in (a) true if we only assume that $\left|s_{n+1}-s_{n}\right|<\frac{1}{n}$ for all $n \in \mathbb{R}$?
2. Prove that every subsequence of a Cauchy sequence is Cauchy.
3. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers, and, for each $n \in \mathbb{N}$, let

$$
\begin{aligned}
s_{n} & =a_{1}+a_{2}+\cdots+a_{n} \\
t_{n} & =\left|a_{1}\right|+\left|a_{2}\right|+\cdots+\left|a_{n}\right|
\end{aligned}
$$

Prove that if $\left\{t_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence, then so is $\left\{s_{n}\right\}_{n=1}^{\infty}$.

