Sections 2.3 The Completeness Property of \mathbb{R}

Let S be a nonempty subset of \mathbb{R} .

- a) S is <u>bounded above</u> if there exists $u \in \mathbb{R}$ such that $s \leq u$ for all $s \in S$. Each such u is called an upper bound of S.
- b) S is <u>bounded below</u> if there exists $w \in \mathbb{R}$ such that $w \leq s$ for all $s \in S$. Each such w is called a <u>lower bound</u> of S.
- c) A set is <u>bounded</u> if it is both bounded above and below. A set is <u>unbounded</u> if it is not bounded.

Let S be a nonempty subset of \mathbb{R} .

- a) u is a supremum (least upper bound) of S if
 - 1) u is an upper bound of S, and
 - 2) if v is an upper bound of S, then $u \leq v$.
- b) w is an <u>infimum</u> (greatest lower bound) of S if
 - 1) w is a lower bound of S, and
 - 2) if t is any lower bound of S, then $t \leq w$.

The Completeness Property of \mathbb{R} Every nonempty set of real numbers that has an upper bound also has a supremum in \mathbb{R} .