Sections 1.3 Finite and Infinite Sets

A set S is finite if it is either empty (ie, has 0 elements) or if there exists a bijection from the set $\mathbb{N}_n = \{1, 2, 3, \dots, n\}$ onto S for some $n \in \mathbb{N}$ (ie, has n elements).

A set S is infinite if it is not finite.

Theorem

- a) If C is an infinite set and B is a finite set, then $C \setminus B$ is an infinite set.
- b) If S is a finite set and $T \subseteq S$, then T is a finite set.
- c) If T is an infinite set and $T \subseteq S$, then S is an infinite set.

A set S is denumerable (countably infinite) if there exists a bijection of \mathbb{N} onto S.

S is <u>countable</u> if it is either finite or denumerable.

S is <u>uncountable</u> if it is not countable.

Theorem Let S, T be sets such that $T \subseteq S$.

- a) If S is countable, then T is countable.
- b) If T is uncountable, then S is uncountable.