TEST 3
MATH 310

NAME:

To receive full credit on each question, you must show all work! This assignment is due at the beginning of class on Wednesday, December 2nd. You are allowed to use your class notes, the course textbook, and me as a resource. No other resources are permitted, including but not limited to: professors or students, other textbooks, the internet, etc. By signing your name on this test, you pledge to abide by these guidelines. Good luck!

1. Show that the smallest element of a nonempty set of positive integers is unique. (Hint: Use induction.)
2. A sequence $a_{0}, a_{1}, a_{2}, \cdots$ is defined recursively as follows:

$$
\begin{aligned}
a_{0} & =2 ; \\
a_{n+1} & =\left(a_{n}\right)^{2} .
\end{aligned}
$$

Find a formula for a_{n} and prove that your formula is correct.
3. Let V be a relation on \mathbb{R} given by $(x, y) \in V$ iff $x=y$ or $x y=1$. Prove that V is an equivalence relation. Give the equivalence class of 3 ; of $-\frac{2}{3}$; of 0 .
4. Suppose that R is nonempty. Prove that if R is a symmetric, transitive relation on A and the domain of R is A, then R is reflexive on A.

