Cartesian Products and Relations

Let A and B be sets. R is a relation from A to B iff R is a subset of $A \times B$. If $(a, b) \in R$, we write $a R b$ and say " a is related to b."

The domain of the relation R from A to B is the set $\operatorname{Dom}(R)=\{x \in A$: there exists $y \in B$ such that $x R y\}$.

The range of the relation R is the set $R n g(R)=\{y \in B:$ there exists $x \in A$ such that $x R y\}$.

For any set A, the relation $I A=\{(x, x): x \in A\}$ is called the identity relation on A.

If R is a relation from A to B, then the inverse of R is the relation $R^{-1}=\{(y, x):(x, y) \in R\}$.

Let R be a relation from A to B, and let S be a relation from B to C. The composite of R and S is $S \circ R=\{(a, c):$ there exists $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S\}$.

