Section 6.2 More Examples of Mathematical Induction

Claim $5^{n}<n$! for $n \geq 12$.
Use statements from the following table, along with the symbols $<$ and $=$ to construct a proof of the above claim:

5^{12}	$\exists k \geq 12$ such that
$12!$	$5\left(5^{k}\right)$
$(k+1)!$	5^{k}
$479,001,600$	$5(k!)$
5^{k+1}	$244,140,625$
$(k+1) k!$	$k!$

Claim 2 divides $n^{2}+n$ for all $n \in \mathbb{N}$.
Use statements from the following table, along with the symbol $=$ and logical connectives to construct a proof of the above claim:

$k^{2}+2 k+1+k+1$	$\exists k \in \mathbb{N}$ such that
$1^{2}+1=2$	$k^{2}+k=2 l$
$\exists l \in \mathbb{Z}$ such that	$k^{2}+k+2 k+2$
$2(l+k+1)$	$2=2(1)$
2 divides $k^{2}+k$	$(k+1)^{2}+(k+1)$
$2 l+2 k+2$	2 divides $(k+1)^{2}+(k+1)$

What's wrong with the following proof that

$$
1+2+\cdots+n=\frac{n(n+1)}{2}
$$

for all n ? If the claim is true, correct the proof; if it is false, provide a counterexample.
Proof
Base Case $\mathrm{n}=1$:

$$
\begin{aligned}
& 1=\frac{1(1+1)}{2} \\
& 1=\frac{2}{2} \\
& 1=1
\end{aligned}
$$

Inductive Hypothesis Suppose there exists $k \in \mathbb{N}$ such that

$$
1+2+\cdots+k=\frac{k(k+1)}{2}
$$

WTS:

$$
\begin{aligned}
1+2+\cdots+(k+1) & =\frac{(k+1)((k+1)+1}{2} \\
\frac{k(k+1)}{2}+k+1 & =\frac{(k+1)(k+2)}{2} \\
\frac{k^{2}+k+2 k+2}{2} & =\frac{k^{2}+3 k+2}{2} \\
\frac{k^{2}+3 k+2}{2} & =\frac{k^{2}+3 k+2}{2}
\end{aligned}
$$

What's wrong with the following proof that

$$
3 \cdot 3^{1}+5 \cdot 3^{2}+\cdots+(2 n+1) \cdot 3^{n}=n \cdot 3^{n+1}
$$

for all $n \in \mathbb{N}$? If the claim is true, correct the proof; if it is false, provide a counterexample.
Proof We use mathematical induction. Let k be an arbitrary natural number, and suppose that

$$
3 \cdot 3^{1}+5 \cdot 3^{2}+\cdots(2 k+1) \cdot 3^{k}=k \cdot 3^{k+1} .
$$

Then

$$
\begin{aligned}
3 \cdot 3^{1}+5 \cdot 3^{2}+\cdots(2 k+1) \cdot 3^{k}+(2 k+3) \cdot 3^{k+1} & =k \cdot 3^{k+1}+(2 k+3) \cdot 3^{k+1} \\
& =(3 k+3) \cdot 3^{k+1} \\
& =(k+1) 3^{k+2}
\end{aligned}
$$

Try it on your own! Prove the following claims using mathematical induction: Claim 6 divides $n^{3}-n$ for all $n \in \mathbb{N}$.

Claim If A is a set with n elements, then A has $\frac{n(n-1)}{2} 2$-element subsets.

