Extended Set Operations and Indexed Families of Sets

Let \mathcal{A} be a family of sets. The <u>union over \mathcal{A} is</u>

$$\bigcup_{A \in \mathcal{A}} A = \{ x : x \in A \text{ for some } A \in \mathcal{A} \}.$$

Let \mathcal{A} be a family of sets. The <u>intersection over \mathcal{A} </u> is

$$\bigcap_{A \in \mathcal{A}} A = \{ x : x \in A \text{ for every } A \in \mathcal{A} \}.$$

Let Δ be a nonempty set such that for each $\alpha \in \Delta$, there is a corresponding set A_{α} . The family $\{A_{\alpha} : \alpha \in \Delta\}$ is an <u>indexed family of sets</u>. The set Δ is called the <u>indexing set</u> and each $\alpha \in \Delta$ is an <u>index</u>.

The indexed family $\mathcal{A} = \{A_{\alpha} : \alpha \in \Delta\}$ of sets is <u>pairwise disjoint</u> iff for all α and β in Δ , either $A_{\alpha} = A_{\beta}$ or $A_{\alpha} \cap A_{\beta} = \emptyset$.