Set Operations

Let A and B be sets.
The union of A and B is the set $A \cup B=\{x: x \in A$ or $x \in B\}$.
The intersection of A and B is the set $A \cap B=\{x: x \in A$ and $x \in B\}$.
The difference of A and B is the set $A-B=\{x: x \in A$ and $x \notin B\}$.

Sets A and B are disjoint iff $A \cap B=\varnothing$.

Let U be the universe and $A \subseteq U$. The complement of A is the set $A^{C}=U-A$.

Let A and B be sets. The product (or cross product) of A and B is $A \times B=\{(a, b): a \in A$ and $b \in B\}$.

