Sections 4.2 Relations

Let A and B be sets. A relation from A to B is a subset of $A \times B$. If $(a, b) \in R$, we can also write $a R b$ or say " a is R-related to b."

If R is a relation from A to B, the domain of R is the set

$$
\operatorname{Dom}(R)=\{x \in A: \exists y \in B \text { s.t. }(x, y) \in R\}
$$

If R is a relation from A to B, the range of R is the set

$$
\operatorname{Rng}(R)=\{y \in B: \exists x \in A \text { s.t. }(x, y) \in R\}
$$

If R is a relation from A to B, the inverse of R is the relation

$$
R^{-1}=\{(y, x):(x, y) \in R\}
$$

If R is a relation from A to B and S is a relation from B to C, the composition of R and S is the relation

$$
S \circ R=\{(a, c): \exists b \in B \text { s.t. }(a, b) \in R \text { and }(b, c) \in S\}
$$

