Sections $1.3 \& 1.4$ Sets and Operations

A set is a collection of objects. The objects in a set are called elements.

The intersection of two sets A and B is the set $A \cap B$ defined as follows:

$$
A \cap B=\{x: x \in A \text { and } x \in B\}
$$

The union of A and B is the set $A \cup B$ defined as follows:

$$
A \cup B=\{x: x \in A \text { or } x \in B\}
$$

The difference of A and B is the set $A \backslash B$ defined as follows:

$$
A \backslash B=\{x: x \in A \text { and } x \notin B\} .
$$

The complement of a set A is the set A^{c} defined as follows:

$$
A^{c}=\{x: x \notin A\} .
$$

The symmetric difference of A and B is the set $A \triangle B$ defined as follows:

$$
A \triangle B=(A \backslash B) \cup(B \backslash A)
$$

Suppose A and B are sets. We will say that A is a subset of B, and write $A \subseteq B$, if every element of A is also as element of B.
A and B are said to be disjoint if $A \cap B=\varnothing$. ie, A and B have no elements in common.

