Math 305

Sections 4.5 Inhomogeneous Equations; the Method of Undetermined Coefficients

Theorem Suppose y_{p} is a particular solution to $y^{\prime \prime}+p y^{\prime}+q y=f$ and y_{1}, y_{2} for a fundamental set of solutions to $y^{\prime \prime}+p y^{\prime}+q y=0$. Then the general solution of $y^{\prime \prime}+p y^{\prime}+q y=f$ is

$$
y=y_{p}+c_{1} y_{1}+c_{2} y_{2}, \text { or } y=y_{p}+y_{h}
$$

where y_{h} is the general solution to the corresponding homogeneous equation $y^{\prime \prime}+p y^{\prime}+q y=0$.

The Method of Undetermined Coefficients It is reasonable to guess that there is a particular solution y_{p} that is of the same form as f. This method will work for functions with terms that replicate under differentiation.

Forcing Function $f(t)$	Trial Solution $y_{p}(t)$
$e^{r t}$	$a e^{r t}$
$\cos (\omega t)$ or $\sin (\omega t)$	$a \cos (\omega t)+b \sin (\omega t)$
polynomial of degree n	$a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}$

Notes:

1. Each term in $f(t)$ and all of its "new" derivatives must show up in $y_{p}(t)$.
2. You can also take products and/or sums of the above functions and the form of y_{p} would be the product/sums of the y_{p} forms for each function.
3. If any term in the form of y_{p} repeats a term from the homogeneous solution y_{h}, then y_{p} must be multiplied by t or t^{2} to eliminate these terms.
