Math 305

Sections $4.1 \& 4.3$ Second-Order, Linear, Homogeneous Equations

Definition A second-order differential equation is of the form

$$
y^{\prime \prime}=F\left(t, y, y^{\prime}\right)
$$

A linear second-order equation has the special form

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

A homogeneous linear equation is of the form

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

Proposition Suppose y_{1} and y_{2} are solutions to the homogeneous linear equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

then $y=c_{1} y_{1}+c_{2} y_{2}$ is also a solution for any constants c_{1} and c_{2}.
Note: $y=c_{1} y_{1}+c_{2} y_{2}$ is called a linear combination of y_{1} and y_{2}.

Definition Two functions u and v are linearly independent on the interval (α, β) if neither is a constant multiple of the other on (α, β). If one is a constant multiple of the other on (α, β), then u and v are linearly dependent on (α, β).

Theorem Suppose y_{1} and y_{2} are linearly independent solutions to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$. Then the general solution is

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

where c_{1} and c_{2} are arbitrary constants.

Proposition If the characteristic equation $\lambda^{2}+p \lambda+q=0$ has two distinct real roots λ_{1} and λ_{2}, then the general solution to $y^{\prime \prime}+p y^{\prime}+q=0$ is

$$
y(t)=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t}
$$

where $c_{1}, c_{2} \in \mathbb{R}$.

Theorem Suppose $p(t), q(t), g(t)$ are continuous on (α, β). Let $t_{0} \in(\alpha, \beta)$. Then for any real numbers y_{0}, y_{1}, there is a unique function $y(t)$ defined on (α, β) which is a solution to

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \text { for } \alpha<t<\beta
$$

and satisfies the initial conditions $y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{1}$.

Proposition If the characteristic equation $\lambda^{2}+p \lambda+q=0$ has two complex conjugate roots $\lambda=a+i b$ and $\bar{\lambda}=a-i b$, then the general solution may be written as

$$
y(t)=c_{1} e^{a t} \cos (b t)+c_{2} e^{a t} \sin (b t)
$$

Proposition If the characteristic equation $\lambda^{2}+p \lambda+q=0$ has only one double root $\lambda=-\frac{p}{2}$, then the general solution to $y^{\prime \prime}+p y^{\prime}+q y=0$ is

$$
y(t)=c_{1} e^{\lambda t}+c_{2} t e^{\lambda t}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

Definition The Wronskian of two functions u and v is defined to be

$$
W(t)=\operatorname{det}\left[\begin{array}{cc}
u(t) & v(t) \\
u^{\prime}(t) & v^{\prime}(t)
\end{array}\right]=u(t) v^{\prime}(t)-u^{\prime}(t) v(t)
$$

Proposition Suppose u and v are solutions to the linear, homogeneous equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

on the interval (α, β). The Wronskian of u and v is either identically 0 on (α, β) or never equal to 0 on (α, β).

Proposition Suppose u and v are solutions to the linear, homogeneous equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

on the interval (α, β). Then u and v are linearly dependent if and only if their Wronskian is identically 0 on (α, β).

