Math 305 Section 2.7 Existence and Uniqueness of Solutions

Existence Theorem Suppose the function f(t, x) is defined and continuous on the rectangle R in the tx-plane. Then given any point $(t_0, x_0) \in R$, the initial value problem

$$x' = f(t, x)$$
 and $x(t_0) = x_0$

has a solution x(t) defined in an interval containing t_0 . Furthermore, the solution will be defined at least until the solution curve $t \to (t, x(t))$ leaves the rectangle R.

Uniqueness Theorem Suppose the function f(t, x) and its partial derivative $\frac{\partial f}{\partial x}$ are both continuous on the rectangle R in the tx-plane. Then for any $(t_0, x_0) \in R$, the initial-value problem

$$x' = f(t, x), \ x(t_0) = x_0$$

has a unique solution.