Math 305

Section 2.1 Differential Equations and Solutions

Definition An ordinary differential equation is an equation involving an unknown function of a single variable together with one or more of its derivatives.

Definition The order of a differential equation is the order of the highest derivative that occurs in the equation.

Definition A first order ordinary differential equation of the form $y^{\prime}=f(t, y)$ is said to be in normal form. Similarly, $y^{(n)}=f\left(t, y, y^{\prime}, \cdots, y^{(n-1)}\right)$ is the normal form for an nth order equation.

Definition A solution of the first order ordinary differential equation $\Phi\left(t, y, y^{\prime}\right)=0$ is a differentiable function $y(t)$ such that $\Phi\left(t, y(t), y^{\prime}(t)\right)=0$ for all t in the interval where $y(t)$ is defined.

Definition A first order differential equation together with an initial condition,

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

is called an initial value problem (IVP). A solution of an IVP is a differentiable function satisfying both the equation and the initial condition.

Definition The interval of existence of a solution to a differential equation is the largest interval over which the function is defined and remains a solution.

