Section 9.5 Alternating Series, Absolute and Conditional Convergence

Alternating Series An alternating series is a series whose terms are alternating positive and negative.

The Alternating Series Test If the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}=b_{1}-b_{2}+b_{3}-b_{4}+\cdots\left(b_{n}>0\right)
$$

satisfies
(i) $b_{n+1} \leq b_{n}$ for all $n$
(ii) $\lim _{n \rightarrow \infty} b_{n}=0$
then the series is convergent.

Absolute Convergence A series $\sum a_{n}$ is called absolutely convergent if the series of absolute values $\sum\left|a_{n}\right|$ is convergent.

Theorem If a series $\sum a_{n}$ is absolutely convergent, then it is convergent.

## Ratio Test

(i) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent (and hence convergent).
(ii) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L>1$ or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.
(iii) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$, the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or divergence of $\sum a_{n}$.

