Section 9.4 Convergence Tests

Theorem If the series $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n \to \infty} a_n = 0$.

Divergence Test If $\lim_{n \to \infty} a_n$ does not exist or if $\lim_{n \to \infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Theorem If $\sum a_n$ and $\sum b_n$ are convergent series, then so are the series $\sum ca_n$ (where c is a constant), $\sum (a_n + b_n)$, and $\sum (a_n - b_n)$, and

(i)

$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$

(ii)

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

(iii)

$$\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$$

Integral Test Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_n = f(n)$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if the improper integral $\int_1^{\infty} f(x) dx$ is convergent. In other words:

(a) If ∫₁[∞] f(x)dx is convergent, then ∑_{n=1}[∞] a_n is convergent.
(b) If ∫₁[∞] f(x)dx is divergent, then ∑_{n=1}[∞] a_n is divergent.

p-series The p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1 and divergent if $p \le 1$.