Section 9.3 Infinite Series

If we try to add the terms of an infinite sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ we get an expression of the form

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots
$$

which is called an infinite series and is denoted by

$$
\sum_{n=1}^{\infty} a_{n}
$$

To determine whether or not a general series has a sum, we consider the partial sums:

$$
\begin{aligned}
& s_{1}=a_{1} \\
& s_{2}=a_{1}+a_{2} \\
& s_{3}=a_{1}+a_{2}+a_{3} \\
& \quad \vdots \\
& \quad \\
& s_{n}=a_{1}+a_{2}+\cdots+a_{n}=\sum_{i=1}^{n} a_{i}
\end{aligned}
$$

These partial sums form a new sequence $\left\{s_{n}\right\}$. If $\lim _{n \rightarrow \infty} s_{n}=s$ (ie, if $\left\{s_{n}\right\}$ is a convergent sequence), then $\sum_{n=1}^{\infty} a_{n}=s$ and we call $\sum_{n=1}^{\infty} a_{n}$ a convergent series. If the sequence $\left\{s_{n}\right\}$ is divergent, then the series is also divergent.

Geometric Series

$$
a+a r+a r^{2}+\cdots+a r^{n-1}+\cdots=\sum_{n=1}^{\infty} a r^{n-1} \quad(a \neq 0)
$$

$r=1$

$$
s_{n}=a+a+a+\cdots+a=n a \rightarrow \pm \infty
$$

$r \neq 1$

$$
\begin{aligned}
& s_{n}=a+a r+a r^{2}+\cdots+a r^{n-1} \Longrightarrow \\
& r s_{n}=a r+a r^{2}+a r^{3}+\cdots+a r^{n} \Longrightarrow \\
& s_{n}-r s_{n}=a-a r^{n} \Longrightarrow \\
& s_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
\end{aligned}
$$

If $-1<r<1, r^{n} \rightarrow 0$ as $n \rightarrow \infty$, so

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{a\left(1-r^{n}\right)}{1-r}=\frac{a}{1-r}
$$

Also, if $|r|>1,|r|^{n} \rightarrow \infty$ as $n \rightarrow \infty$ so $\lim _{n \rightarrow \infty} s_{n}$ diverges. The geometric series

$$
\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+\cdots
$$

is convergent if $|r|<1$ and its sum is

$$
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}, \quad|r|<1
$$

If $|r| \geq 1$, the geometric series is divergent.

Theorem The harmonic series

$$
\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots
$$

is divergent.

