Section 9.1 Sequences

Definition A sequence is a list of numbers determined by a function a_{n}, where n denotes positive integers. (ie, the function a_{n} has domain the positive integers)

Definition A sequence $\left\{a_{n}\right\}$ has the limit L and we write

$$
\lim _{n \rightarrow \infty} a_{n}=L \text { or } a_{n} \rightarrow L \text { as } n \rightarrow \infty
$$

if we can make the terms a_{n} as close to L as we like by taking n sufficiently large. If $\lim _{n \rightarrow \infty} a_{n}$ exists, we say the sequence converges (or is convergent). Otherwise, we say the sequence diverges (or is divergent).

Theorem If $\lim _{x \rightarrow \infty} f(x)=L$ and $f(n)=a_{n}$ when n is a positive integer, then $\lim _{n \rightarrow \infty} a_{n}=L$.
All algebraic limit properties hold for sequences (ie, the limit of the sum is the sum of the limits, etc.)

The Squeeze Theorem If $a_{n} \leq b_{n} \leq c_{n}$ for $n \geq n_{0}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c n=L$, then $\lim _{n \rightarrow \infty} b n=L$.

Corollary to Squeeze Theorem If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

