Section 8.3 Slope Fields and Euler's Method

## Slope Fields

Suppose we have a first-order differential equation of the form

$$
y^{\prime}=F(x, y)
$$

where $F(x, y)$ is some expression in $x$ and $y$. If we draw short line segments with slope $F(x, y)$ at several points $(x, y)$, the result is called a slope field (or direction field).

## Euler's Method

Euler's method says to start at the point given by the initial condition and proceed in the direction indicated by the direction field. For the general first-order initial-value problem $y^{\prime}=F(x, y), y\left(x_{0}\right)=y_{0}$, we use step size $h$ to find the following $y$-values:

$$
\begin{aligned}
& y_{1}\left(x_{1}\right)=y\left(x_{0}+h\right)=y_{0}+h F\left(x_{0}, y_{0}\right) \\
& y_{2}\left(x_{2}\right)=y\left(x_{1}+h\right)=y_{1}+h F\left(x_{1}, y_{1}\right) \\
& \quad \vdots \\
& y_{n}\left(x_{n}\right)=y\left(x_{n-1}+h\right)=y_{n-1}+h F\left(x_{n-1}, y_{n-1}\right) .
\end{aligned}
$$

