Section 7.5 Integrating Rational Functions By Partial Fraction Decomposition

How to Integrate Rational Functions:

Let $f(x)=\frac{P(x)}{Q(x)}$ be a rational function (ie, a ratio of polynomials).

- If $\operatorname{deg}(P) \geq \operatorname{deg}(Q)$, use polynomial long division to rewrite $f(x)$ as the sum of simpler fractions:

$$
f(x)=\frac{P(x)}{Q(x)}=S(x)+\frac{R(x)}{Q(x)}(\mathrm{R}(\mathrm{x}) \text { remainder })
$$

- If $\operatorname{deg}(P)<\operatorname{deg}(Q)$, use partial fraction decomposition to rewrite $f(x)$ as the sum of simpler fractions.

Method of Partial Fraction Decomposition

If $\operatorname{deg}(P)<\operatorname{deg}(Q)$, we need to express $f(x)$ as a sum of partial fractions. We have 4 cases depending on $Q(x)$:

Case I The denominator $Q(x)$ is a product of distinct linear factors. This means we can write

$$
Q(x)=\left(a_{1} x+b_{1}\right) \cdots\left(a_{k} x+b_{k}\right)
$$

where no factor is repeated. In this case the partial fraction theorem states that there exists constants $A_{1} \cdots A_{k}$ such that

$$
\frac{P(x)}{Q(x)}=\frac{A_{1}}{a_{1} x+b_{1}}+\cdots+\frac{A_{k}}{a_{k} x+b_{k}}
$$

Case II $Q(x)$ is a product of linear factors, some of which are repeated. Suppose the first linear factor $\left(a_{1} x+b_{1}\right)$ is repeated r times. Then instead of the single term $\frac{A_{1}}{a_{1} x+b_{1}}$, we would use

$$
\frac{A_{1}}{\left(a_{1} x+b_{1}\right)}+\frac{A_{2}}{\left(a_{1} x+b_{1}\right)^{2}}+\cdots+\frac{A_{r}}{\left(a_{1} x+b_{1}\right)^{r}} .
$$

Case III $Q(x)$ contains irreducible quadratic factors, none of which is repeated. If $Q(x)$ has the factor $a x^{2}+b x+c$, where $b^{2}-4 a c<0$, the expression for $\frac{P(x)}{Q(x)}$ will have a term of the form $\frac{A x+B}{a x^{2}+b x+c}$.
Case IV $Q(x)$ contains a repeated irreducible quadratic factor. Suppose the irreducible quadratic factor $a x^{2}+$ $b x+c$ is repeated r times. Then instead of the single term $\frac{A x+B}{a x^{2}+b x+c}$, we would use

$$
\frac{A_{1} x+B_{1}}{\left(a x^{2}+b x+c\right)}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\cdots+\frac{A_{r} x+B_{r}}{\left(a x^{2}+b x+c\right)^{r}} .
$$

