Math 201

Section 3.6 L'Hopital's Rule; Indeterminate Forms

Indeterminate form of type $\frac{0}{0}$
If we have a limit of the form

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
$$

where both $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$ as $x \rightarrow a$, then this limit may or may not exist and is called an indeterminate form of type $\frac{0}{0}$.

Indeterminate form of type $\frac{\infty}{\infty}$
If we have a limit of the form

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
$$

where both $f(x) \rightarrow \infty$ (or $-\infty$) and $g(x) \rightarrow \infty$ (or $-\infty$), then the limit may or may not exist and is called an indeterminate form of type $\frac{\infty}{\infty}$.

L'Hopital's Rule

Suppose f and g are differentiable and $g^{\prime}(x) \neq 0$ near a (except possibly at a). Suppose that

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
$$

is an indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$. Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if the limit on the right side exists (or is ∞ or $-\infty$).
Note: L'Hopital's Rule is also valid for one-sided limits and for limits at infinity or negative infinity (ie, " $x \rightarrow a$ " can be replaced by $x \rightarrow a^{+}, x \rightarrow a^{-}, x \rightarrow \infty$, or $\left.x \rightarrow-\infty\right)$.

Indeterminate Products

If $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=\infty($ or $-\infty)$, then it isn't clear what the value of $\lim _{x \rightarrow a} f(x) g(x)$, if any, will be. This kind of limit is called an indeterminate form of type $0 \cdot \infty$. We can deal with it by writing the product $f g$ as a quotient:

$$
f g=\frac{f}{1 / g} \text { or } \frac{g}{1 / f}
$$

This converts the given limit into an indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$ so that we can use l'Hopital's Rule.

Indeterminate Differences

If $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=\infty$, then the $\operatorname{limit}^{\lim } x_{x \rightarrow a}[f(x)-g(x)]$ is called an indeterminate form of type $\infty-\infty$. We try to convert the difference into a quotient (for ex: by using a common denominator, rationalization, factoring out a common factor, etc.) so that we have an indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

Indeterminate Powers

Several indeterminate forms arise from the limit

$$
\lim _{x \rightarrow a}[f(x)]^{g(x)}
$$

1. $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0\left(\right.$ type $\left.0^{0}\right)$
2. $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=0\left(\right.$ type $\left.\infty^{0}\right)$
3. $\lim _{x \rightarrow a} f(x)=1$ and $\lim _{x \rightarrow a} g(x)= \pm \infty\left(\right.$ type $\left.1^{\infty}\right)$

Each of these 3 cases can be treated by taking the natural logarithm:
Let $y=[f(x)]^{g(x)}$, then $\ln (y)=g(x) \cdot \ln (f(x))$.

