Math 201

Section 5.6 The Fundamental Theorem of Calculus

Evaluation Theorem

If f is continuous on the interval $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f; that is, $F^{\prime}=f$.

The Fundamental Theorem of Calculus
If f is continuous on $[a, b]$, then the function g defined by

$$
g(x)=\int_{a}^{x} f(t) d t, \quad a \leq x \leq b
$$

is an antiderivative of f; that is, $g^{\prime}(x)=f(x)$ for $a<x<b$.
$\underline{\text { Differentiating and Integrating as Inverse Processes }}$
Suppose f is continuous on $[a, b]$.

1. If $g(x)=\int_{a}^{x} f(t) d t$, then $g^{\prime}(x)=f(x)$.
2. $\int_{a}^{b} f(x) d x=F(b)-F(a)$, where F is any antiderivative of f; that is, $F^{\prime}=f$.
