Math 201

Section 5.2 The Indefinite Integral

A function F is called an antiderivative of f on an interval I if $F^{\prime}(x)=f(x)$ for all x in I.

Theorem If F is an antiderivative of f on an interval I, then the general antiderivative of f on I is

$$
F(x)+C
$$

where C is an arbitrary constant.

The process of finding antiderivatives is called antidifferentiation or integration. If $F^{\prime}(x)=f(x)$, then we use the notation

$$
\int f(x) d x=F(x)+C .
$$

C is called the constant of integration.

Table of Integration Formulas
Suppose $F^{\prime}(x)=f(x)$ and $G^{\prime}(x)=g(x)$. Then

1. $\int k f(x) d x=k F(x)+C$ (k is some constant)
2. $\int[f(x)+g(x)] d x=F(x)+G(x)+C$
3. $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$
4. $\int \cos (x) d x=\sin (x)+C$
5. $\int \sin (x) d x=-\cos (x)+C$
6. $\int \sec ^{2}(x) d x=\tan (x)+C$
7. $\int \sec (x) \tan (x) d x=\sec (x)+C$
8. $\int \frac{1}{x} d x=\ln (x)+C$
9. $\int e^{x} d x=e^{x}+C$

Initial-value problems

$$
\frac{d y}{d x}=f(x), \quad y\left(x_{0}\right)=y_{0}
$$

is a special type of a differential equation, called an initial-value problem (IVP). To solve an IVP, first integrate to find an antiderivative for $f(x)$:

$$
y=\int f(x) d x=F(x)+C .
$$

Then use your initial condition to solve for C :

$$
y_{0}=y\left(x_{0}\right)=F\left(x_{0}\right)+C
$$

which gives

$$
C=y_{0}-F\left(x_{0}\right) .
$$

