Math 201

Section 3.3 Derivatives of Exponential and Inverse Trigonometric Functions
$\underline{\text { Differentiability of Inverse Functions }}$

$$
\frac{d}{d x}\left[f^{-1}(x)\right]=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Theorem Suppose that the domain of a function f is an open interval on which $f^{\prime}(x)>0$ or on which $f^{\prime}(x)<0$. Then f is one-to-one, $f^{-1}(x)$ is differentiable at all values of x in the range of f, and the derivative of $f^{-1}(x)$ is given by the formula above.

Derivatives of Exponential Functions

$$
\frac{d}{d x}\left[e^{x}\right]=e^{x} \quad \frac{d}{d x}\left[b^{x}\right]=\ln (b) b^{x}
$$

