Math 201

Section 4.2 Analysis of Functions II: Relative Extrema; Graphing Polynomials

A function f has a local maximum (or relative maximum) at c if $f(c) \geq f(x)$ when x is near c. (This means that $f(c) \geq f(x)$ for all x in some open interval containing c.)
Similarly, f has a local minimum at c if $f(c) \leq f(x)$ when x is near c.

A critical number of a function f is a number c in the domain of f such that either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.

Fermat's Theorem

If f has a local maximum or minimum at c, then c is a critical number of f.
NOTE: The converse of Fermat's Theorem is not true. That is, if c is a critical number of f, then c might not be a local maximum or minimum.)

The First Derivative Test

Suppose that c is a critical number of a continuous function f.
(a) If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
(b) If f^{\prime} changes from negative to positive at c, then f has a local minimum at c.
(c) If f^{\prime} does not change sign at c (that is, f^{\prime} is positive on both sides of c or negative on both sides), then f has no local maximum or minimum at c.

The Second Derivative Test

Suppose $f^{\prime \prime}(x)$ is continuous near c.
(a) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at c.
(b) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at c.

