Math 201

Section 4.1 Analysis of Functions I: Increase, Decrease, and Concavity

Let f be defined on an interval, and let x_{1} and x_{2} denote points in that interval.
(a) f is increasing on the interval if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.
(b) f is decreasing on the interval if $f\left(x_{1}\right)>f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$.
(c) f is constant on the interval if $f\left(x_{1}\right)=f\left(x_{2}\right)$ for all points x_{1} and x_{2}.

Increasing/Decreasing Test
(a) If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval.
(b) If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval.

Concavity

A function is called concave upward on an interval I if f^{\prime} is an increasing function on I. It is called concave downward on I if f^{\prime} is decreasing on I.

An inflection point is a point where a curve changes its direction of concavity.

Concavity Test
(a) If $f^{\prime \prime}(x)>0$ for all x in I, then the graph of f is concave upward on I.
(b) If $f^{\prime \prime}(x)<0$ for all x in I, then the graph of f is concave downward on I.

