Math 201

Section 3.5 Local Linear Approximation; Differentials

From the definition of derivatives, we have

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

That is, for values of x very close to a,

$$
f^{\prime}(a) \approx \frac{f(x)-f(a)}{x-a}
$$

which gives

$$
f(x) \approx f^{\prime}(a)(x-a)+f(a)
$$

This is called the linear approximation or tangent line approximation of f at a.

The linear function whose graph is this function, that is,

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

is called the linearization of f at a.

Differentials

If $y=f(x)$, where f is a differentiable function, then the differential $d x$ is an independent variable (often viewed as the change in x). The differential $d y$ is then defined in terms of $d x$ by the equation

$$
d y=f^{\prime}(x) d x
$$

