Math 201
Section 2.3 Introduction to Techniques of Differentiation
Theorem

$$
\frac{d}{d x}[c]=0
$$

(ie, the derivative of a constant is 0 .)
The Power Rule If $n$ is any real number, then

$$
\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}
$$

The Constant Multiple Rule If $c$ is a constant and $f$ is a differentiable function, then

$$
\frac{d}{d x}[c f(x)]=c f^{\prime}(x)
$$

The Sum Rule If $f$ and $g$ are both differentiable, then

$$
\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)] .
$$

Higher Order Derivatives The derivative $f^{\prime}$ is a function itself, so we can take the derivative of $f^{\prime}$. The derivative of $f^{\prime}$ is called the second derivative of $f$ and denoted by

$$
f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}=y^{\prime \prime}=\cdots
$$

In general, we use the notation for the nth derivative of $f$ :

$$
f^{(n)}(x)=\frac{d^{n} y}{d x^{n}}=y^{(n)}=\cdots
$$

If $s(t)$ is a position function, its second derivative is acceleration.

