Math 201
Section 2.2 The Derivative Function
Definition The function f^{\prime} defined by the formula

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

is called the derivative of f with respect to x. The domain of f^{\prime} consists of all x in the domain of f for which the limit exists.

Different Ways to Interpret the Derivative

- $f^{\prime}(a)=$ slope of the line tangent to $f(x)$ at the point $(a, f(a))$.
- $f^{\prime}(a)=$ instantaneous rate of change of $y=f(x)$ at $x=a$.

Finding an Equation for the Tangent Line to $y=f(x)$ at $x=x_{0}$
Step 1 Evaluate $f\left(x_{0}\right)$; the point of tangency is ($x_{0}, f\left(x_{0}\right)$).
Step 2 Find $f^{\prime}(x)$ and evaluate $f^{\prime}\left(x_{0}\right)$, which is the slope m of the line.
Step 3 Substitute the value of the slope m and the point $\left(x_{0}, f\left(x_{0}\right)\right)$ into the point-slope form of the line

$$
y-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

Definition A function f is differentiable at x_{0} if $f^{\prime}\left(x_{0}\right)$ exists.
Theorem If f is differentiable at x_{0}, then f is continuous at x_{0}.
NOTE: The converse of this theorem is not true; that is, there are functions that are continuous but not differentiable.

