Math 201

Section 2.1 Tangent Lines and Rates of Change
Definition The tangent line to the curve $y=f(x)$ at the point $P(a, f(a))$ is the line through P with slope

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

provided that this limit exists.
Velocities If $s(t)$ is a position function, then the average velocity on the interval $\left[t_{1}, t_{2}\right]$ is

$$
\frac{s\left(t_{2}\right)-s\left(t_{1}\right)}{t_{2}-t_{1}}
$$

If $s(t)$ is a position function, then the instantaneous velocity at $t=a$ is given by

$$
v(a)=\lim _{h \rightarrow 0} \frac{s(a+h)-s(a)}{h} .
$$

Other Rates of Change For any function $y=f(x)$ where y is some quantity depending on x,

$$
\begin{aligned}
& \text { average rate of change from } x_{1} \text { to } x_{2}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \\
& \text { instantaneous rate of change at }\left(x_{1}, f\left(x_{1}\right)\right)=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\lim _{h \rightarrow 0} \frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}
\end{aligned}
$$

