Math 201

Section 1.6 Continuity of Trigonometric, Exponential, and Inverse Functions
Theorem If c is any number in the natural domain of the stated trigonometric function, then

$$
\begin{array}{lll}
\lim _{x \rightarrow c} \sin (x)=\sin (c) & \lim _{x \rightarrow c} \cos (x)=\cos (c) & \lim _{x \rightarrow c} \tan (x)=\tan (c) \\
\lim _{x \rightarrow c} \csc (x)=\csc (c) & \lim _{x \rightarrow c} \sec (x)=\sec (c) & \lim _{x \rightarrow c} \cot (x)=\cot (c) .
\end{array}
$$

Theorem Let $b>0, b \neq 1$.
(a) The function b^{x} is continuous on $(-\infty, \infty)$.
(b) The function $\log _{b} x$ is continuous on $(0, \infty)$.

The Squeeze Theorem If $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a) and

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L
$$

then

$$
\lim _{x \rightarrow a} g(x)=L .
$$

