Math 201 Section 1.6 Continuity of Trigonometric, Exponential, and Inverse Functions

<u>Theorem</u> If c is any number in the natural domain of the stated trigonometric function, then

 $\lim_{x \to c} \sin(x) = \sin(c) \quad \lim_{x \to c} \cos(x) = \cos(c) \quad \lim_{x \to c} \tan(x) = \tan(c)$ $\lim_{x \to c} \csc(x) = \csc(c) \quad \lim_{x \to c} \sec(x) = \sec(c) \quad \lim_{x \to c} \cot(x) = \cot(c).$

<u>Theorem</u> Let $b > 0, b \neq 1$.

- (a) The function b^x is continuous on $(-\infty, \infty)$.
- (b) The function $\log_b x$ is continuous on $(0, \infty)$.

The Squeeze Theorem If $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a) and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L,$$

then

$$\lim_{x \to a} g(x) = L.$$