Math 201
Section 1.3 Limits at Infinity; End Behavior of a Function Then

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

means that the values of $f(x)$ can be made as close to L as we like by taking x sufficiently large.
Note: The line $y=L$ is called a horizontal asymptote of the curve $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=L \text { or } \lim _{x \rightarrow-\infty} f(x)=L
$$

Theorem Let f be a rational function with numerator $P(x)$ and denominator $Q(x)$. Suppose $\operatorname{deg}(P(x))=n$ and $\operatorname{deg}(Q(x))=m$.

1. If $n>m$, then

$$
\lim _{x \rightarrow \infty} f(x)= \pm \infty
$$

depending on the sign of the leading coefficient of $P(x)$.
2. If $m>n$, then

$$
\lim _{x \rightarrow \infty} f(x)=0
$$

3. If $n=m$, then

$$
\lim _{x \rightarrow \infty} f(x)=\frac{a_{n}}{b_{m}}
$$

where a_{n} is the leading coefficient of $P(x)$ and b_{m} is the leading coefficient of $Q(x)$.

