Math 201
Section 1.1 Limits (An Intuitive Approach)
The Tangent Line Problem Given a function and a point on its graph, find an equation of the line that is tangent to the graph at the given point.

The Area Problem Given a function f, find the area between the graph of f and an interval $[a, b]$ on the x-axis.
(Informal)Definition We write

$$
\lim _{x \rightarrow a} f(x)=L
$$

and say "the limit of $f(x)$ as x approaches a equals L " if we can make the values of $f(x)$ arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a (on either side of a) but not equal to a.
(Informal)Definition We write

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

and say "the left-hand limit of $f(x)$ as x approaches a is equal to L " if we can make the values of $f(x)$ arbitrarily close to L by taking x to be sufficiently close to a and x less than a.
Similarly, if we require that x be greater than a, we get "the right-hand limit of $f(x)$ as x approaches a is equal to L " and we write

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

(Informal)Definition The notation

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

means that the values of $f(x)$ can be made arbitrarily large (as large as we please) by taking x sufficiently close to a (on either side of a) but not equal to a.
Note: The line $x=a$ is called a vertical asymptote of the curve $y=f(x)$ if at least one of the following statements is true:

$$
\lim _{x \rightarrow a} f(x)= \pm \infty \quad \lim _{x \rightarrow a^{-}} f(x)= \pm \infty \quad \lim _{x \rightarrow a^{+}} f(x)= \pm \infty
$$

