Name: Math 150 Spring 2012 Test 1 February 1, 2012 There are twenty questions total with point values given below. Where indicated, write your answer in the space provided. Good luck! 1. (3 points) _____ The negation of $5+3 \le 9$ is: (a) $5+3 \ge 9$ (b) 5+3 > 9(c) $5+3 \neq 9$ (d) 5+3 < 92. (3 points) The negation of the statement "Every dog has its day." is: (a) Every dog doesn't have its day. (b) Some dog doesn't have its day. (c) All dogs have their day. (d) Some dog has its day. 3. (3 points) ____ Which of the following is not a statement? (a) December 7, 1941, was a Sunday. (b) 5 + 18 = 13 and 4 - 3 = 1(c) Behave yourself and sit down. (d) Accidents are the main cause of deaths of children under the age of 8. 4. (3 points) _____ The negation of the statement "Pete likes Susie and Susie doesn't like Mark." is: (a) Pete likes Susie and Susie likes Mark. (b) Pete doesn't like Susie and Susie likes Mark. (c) Pete likes Susie and Susie doesn't like Mark. (d) Pete doesn't like Susie or Susie likes Mark. 5. (3 points) _____ The negation of the statement "You get a stomach ache if you eat ice cream." is: (a) You can eat ice cream and not get a stomach ache. (b) You get a stomach ache if you don't eat ice cream. (c) If you don't eat ice cream, you won't get a stomach ache. (d) You shouldn't eat ice cream. (6-7) (10 points) If p is true, q is true, and r is false, find the truth value for each of the following: 6. ____ $\sim q \rightarrow \sim r$ 7. $\sim [(\sim p \land \sim q) \lor \sim q]$ 8. (3 points) If $\sim (p \wedge q)$ is false, what must be the truth value of q? 9. (3 points) If $q \to (p \land \sim p)$ is true, what must be the truth value of q? 10. (2 points) _____ True or False: If the antecedent of a conditional statement is false, the conditional statement is true. 11. (2 points) True or False: Whenever $p \wedge q$ is false, $p \leftrightarrow q$ is false. (12-13) (10 points) Let p represent the statement "She owns a bike," let q represent the statement "He is a math geek," and let r represent the statement "I aced this test." (12-13) Convert each of the following compound statements into symbols.

"I aced this test and he is a math geek, and it is not the case that if she owns a bike,

12. "If she owns a bike and he is a math geek, then I aced this test."

then he is a math geek."

(14-17) (20 points) For the gi	ven conditional statement,	write the conditional,	converse, the inverse, as	nd
the contrapositive in "ifthen"	form.			

"Class being cancelled is necessary for pigs flying."

14.	Conditional:
15.	Converse:
16.	Inverse:
17.	Contrapositive:
18.	(15 points) Construct a truth table for $p \to (\sim (p \land \sim q))$:

21-22 Draw an Euler diagram depicting the following argument. Determine if the argument is valid or invalid. (10 points each)

All penguins are black and white.

19. "I Love Lucy" is not a penguin.
"I Love Lucy" is not black and white.

All math geeks are cool.

20. Some math geeks play soccer.

Some soccer players are cool.

Extra Credit Use a truth table to determine whether the argument is valid or invalid.

If it is Tuesday, then we do not have class.

It is not Tuesday.

We have class.