Math 150 Extra Credit - due Tuesday, October 28th

Pascal's Pizza

1. If we use bacon and pepperoni only:
(a) How many 1-topping pizzas can we make? List the possibilities.
(b) How many 2-topping pizzas can we make? List them.
(c) How many 0-topping pizzas can we make?
2. Now suppose that we can use bacon, pepperoni, and pineapple only:
(a) How many 1-topping pizzas can we make? List the possibilities.
(b) How many 2-topping pizzas can we make? List them.
(c) How many 3 -topping pizzas can we make?
3. Complete the following chart by listing and counting the possibilities.

	Number of pizzas possible with				
Ingredients	0 topping	1 topping	2 toppings	3 toppings	4 toppings
1					
2					
3					
4					

4. Often the table you filled in above is arranged a bit differently, as below, where the top 1 counts the number of 0 -topping pizzas that can be made if 0 toppings are available. Complete the first 6 rows of this triangle, which is called Pascal's Triangle.

1
11
121
$\begin{array}{llll}1 & 3 & 3 & 1\end{array}$
Do you see some symmetry in this triangle? Describe it.
5. From your results:
(a) How many 2-topping pizzas are possible if 5 ingredients are available?
(b) How many 3 -topping pizzas are possible if 5 ingredients are available?
(c) Explain why these two answers are related.
(d) What does this have to do with the symmetry you observed above?

