## Math 150

Section 9.1 Probability Distributions and Expected Value

A random variable is a function that assigns a real number to each outcome of an experiment.
A table that lists all the outcomes with the corresponding probabilities is called a probability distribution.
NOTE: The sum of the probabilities in a probability distribution must always equal 1 .

The information in a probability distribution is often displayed graphically as a special kind of bar graph called a histogram.

Example 1 Give the probability distribution for the number of heads showing when three coins are tossed. Draw a histogram for this probability distribution. What would be the probability of tossing no more than 2 heads?

Suppose that the random variable $x$ can take on the $n$ values $x_{1}, x_{2}, x_{3}, \cdots, x_{n}$. Suppose also that the probabilities that these values occur are, respectively, $p_{1}, p_{2}, p_{3}, \cdots, p_{n}$. Then the expected value of the random variable is

$$
E(x)=x_{1} p_{1}+x_{2} p_{2}+x_{3} p_{3}+\cdots+x_{n} p_{n}
$$

Example 2 Find the expected number of heads when tossing three coins.

A game is termed a "fair game" only when the expected net winnings for the game are zero.

| If the Expected Net Winnings for the player are: | Then the game is: |
| :--- | :--- |
| Less than zero | Unfair in favor of the operator |
| Zero | A fair game |
| Greater than zero | Unfair in favor of the player |

If the expected net winnings for the player of a game are negative (say $-\$ 1$ ), then the player is paying $\$ 1$ too much for each play.

If the expected net winnings for the player of a game are positive (say $\$ 1$ ), then the player is being charged $\$ 1$ too little.

Example 3 A player pays $\$ 1$ to roll one die. If the player rolls a 1 the "payoff" is $\$ 2$. If the person rolls a 3 the payoff is $\$ 1$. All other numbers result in a payoff of $\$ 0$. Find the expected winnings (or losses) for a person playing this game. Is this a fair game?

Example 4500 raffle tickets are sold for $\$ 4$ each. One ticket holder will win $\$ 600$, one ticket holder will win $\$ 200$, and two ticket holders will win $\$ 100$ each. Find the expected net winnings for a person who buys one ticket.

