Math 150

Section 8.6 Bayes' Formula

Bayes' Formula (Special Case)

$$
P(F \mid E)=\frac{P(F) P(E \mid F)}{P(F) P(E \mid F)+P\left(F^{\prime}\right) P\left(E \mid F^{\prime}\right)}
$$

Bayes' Formula (For three pairwise disjoint events)
Suppose F_{1}, F_{2}, and F_{3} are pairwise disjoint events (meaning that any two of them are disjoint) whose union is the sample space. Then for an event E ,

$$
\begin{aligned}
& P\left(F_{1} \mid E\right)=\frac{P\left(F_{1}\right) P\left(E \mid F_{1}\right)}{P\left(F_{1}\right) P\left(E \mid F_{1}\right)+P\left(F_{2}\right) P\left(E \mid F_{2}\right)+P\left(F_{3}\right) P\left(E \mid F_{3}\right)} \\
& P\left(F_{2} \mid E\right)=\frac{P\left(F_{2}\right) P\left(E \mid F_{2}\right)}{P\left(F_{1}\right) P\left(E \mid F_{1}\right)+P\left(F_{2}\right) P\left(E \mid F_{2}\right)+P\left(F_{3}\right) P\left(E \mid F_{3}\right)} \\
& P\left(F_{3} \mid E\right)=\frac{P\left(F_{3}\right) P\left(E \mid F_{3}\right)}{P\left(F_{1}\right) P\left(E \mid F_{1}\right)+P\left(F_{2}\right) P\left(E \mid F_{2}\right)+P\left(F_{3}\right) P\left(E \mid F_{3}\right)}
\end{aligned}
$$

Examples

Example 1 For a fixed length of time, the probability of worker error on a certain production line is .1, the probability that an accident will occur when there is worker error is .3 , and the probability that an accident will occur when there is no worker error is .2. Find the probability of no worker error if there is an accident.

Example 2

Age Group	$\%$ in sample	Probability of high cholesterol
$18-39$	46.3	.315
$40-64$	34.9	.504
$65+$	18.8	.405

Find the probability of a person being $65+$, given that the person does not have high cholesterol.

