Math 150

Section 8.4 Basic Concepts of Probability

Addition Rule for Counting:

$$
n(A \cup B)=n(A)+n(B)-n(A \cap B)
$$

Addition Rule for Probability:

$$
P(E \cup F)=P(E)+P(F)-P(E \cap F)
$$

Example 1 Let $S=\{1,2,3,4,5\}$. Choose one element of S at random. Let E be the event you choose an odd number. Let F be the event you choose a prime number. Find $P(E \cup F)$, the probability your choice is odd or prime.

If two events are disjoint (mutually exclusive), then the events cannot occur at the same time. Thus, $E \cap F=\varnothing$ and $P(E \cap F)=0$. When E and F are disjoint, the Addition Rule for Probability simplifies to $P(E \cup F)=P(E)+P(F)$.
$\underline{\text { Compliment Rule: }}$

$$
P\left(E^{\prime}\right)=1-P(E)
$$

Example 2 Suppose you roll 2 dice. Find the following:

- $\mathrm{n}(\mathrm{S})$
- $\mathrm{P}(3$ on 1 st die $)$
- $\mathrm{P}(3$ on 2 nd die $)$
- $\mathrm{P}(3$ on both dice $)$
- $\mathrm{P}(3$ on 1 st or 2 nd die $)$
- $\mathrm{P}(1$ st die is less than 2nd die)
- P (sum of dice is 7)
- $\mathrm{P}($ sum is less than or equal to 4$)$
- $\mathrm{P}($ sum is 12$)$
- P (sum is not 12)
- $\mathrm{P}($ sum is 5 or 10$)$

Odds in Favor of an Event If E is an event, then

$$
P(E)=\frac{n(E)}{n(S)}
$$

So $P(E)$ compares the number of ways E can occur to the total number of possible outcomes.
The odds in favor of E compares the number of ways E can occur to the number of ways E cannot occur:

The odds in favor of $\mathrm{E}=n(E): n\left(E^{\prime}\right)$

Example 3 Suppose you roll 2 dice. Find the odds in favor of rolling a sum of 4.

