Math 150

Section 8.1 Sets

A set is a collection of objects. The objects of a set are called elements and we use curly brackets to denote a set.

The empty set, or null set, is the set with no elements.
The universal set is a set that contains all of the objects being discussed.
Two sets are equal if they contain exactly the same elements (ordering doesn't matter in sets).
A set A is a subset of a set B (written $A \subseteq B$) provided that every element of A is also an element of B.

Example 1 For the given sets, decide whether each statement is true or false.

$$
A=\{1,2,3,4,5\}, \quad B=\{1,\{2\}, 3\}, \quad C=\{1,2,3\}, \quad D=\{2,4,6\}
$$

- $1 \in A$
- $1 \subseteq A$
- $D \subseteq A$
- $C \subseteq A$
- $\{2\} \subseteq B$
- $\emptyset \subseteq B$
- $C \subseteq C$
- $C \in A$
- $\{\emptyset\} \subseteq D$

Example 2 List all the possible subsets for each given set.

$$
A=\{\triangle, \square\}, \quad B=\{2,4,5\}
$$

A set of n distinct elements has 2^{n} subsets.
For any set A,

$$
\emptyset \subseteq A \text { and } A \subseteq A
$$

A set A is said to be a proper subset of a set B (written $A \subset B$) if every element of A is an element of B, but B contains at least one element that is not a member of A.

Operations on Sets

Given a set A and a universal set U, the set of all elements of U that do not belong to A is called the complement of A.
Notation $A^{\prime}=\{x \mid x \notin A\}$
Given two sets A and B, the set of all elements belonging to both set A and set B is called the intersection of the two sets.

Notation $A \cap B=\{x \mid x \in A$ and $x \in B\}$
The set of all elements belonging to set A or to set B, or to both sets, is called the union of the two sets.
Notation $A \cup B=\{x \mid x \in A$ or $x \in B\}$
$\underline{\text { Example } 3}$ Let $A=\{1,2,3,4,5\}, B=\{2,4,6,8\}$, and $U=\mathbb{N}$. Find the following

- A^{\prime}
- $A \cap B$
- $A \cup B$

Example 4 Let $U=\{x \mid x$ is a student at Winthrop $\}, A=\{$ students in Math 150$\}$, and

- B^{\prime}
- $A \cap B$
- $A \cap B^{\prime}$
- $A \cup B$
- $A \cap A^{\prime}$

For any sets A and B, A and B are disjoint if $A \cap B=\emptyset$.

