Math 150

Section 3.3 The Conditional and Circuits

<u>Definition</u> A <u>conditional</u> statement is a compound statement that uses the connective "if \cdots then." "If p, then q" is symbolized $p \to q$. We can also read $p \to q$ as "p implies q." In the conditional $p \to q$, the statement p is the <u>antecedent</u> and q is the consequent.

Example 1 Write the statements in "if, then" form and identify the antecedent and consequent. All Marines love boot camp. It must be alive if it is breathing.

Truth Table for $p \to q$

p	q	$p \to q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Negation	of	\mathbf{a}	Conditional
----------	----	--------------	-------------

p	q	$p \to q$	$\sim (p \rightarrow q)$	$p\wedge \sim q$
Т	Т	Т	F	F
Т	F	F	Т	Т
F	Т	Т	F	F
F	F	Т	F	F

A tautology is a statement that is always true.

Example 2 Negate the following conditional: "If you build it, they will come."